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PRINCIPAL COMPONENTS REGRESSION I N  EXPLORATORY 

STATISTICAL RESEARCH* 


WILLIAMF. MASSY 

Stanford University 


Regression upon principal components of the percentage points of 
the income and education distributions for 1950 census tracts in the city 
of Chicago led t o  the estimation of "beta coefficient profiles" for tele- 
vision receiver and refrigerator ownership, for central heating system 
usage, and for a measure of dwelling unit overcrowding. The betas are 
standardized coefficients of regression of a dependent variable upon the 
proportions of families in the classes of the marginal income and educa- 
tion distributions. They measure the relative contribution of families in 
these classes to  the over-all per cent saturation of the dependent vari- 
able in the tract. The coefficients were estimated by techniques de- 
veloped in the first portion of the paper; estimation by classical regres- 
sion methods would have been impossible because of multicollinearity. 
The  empirical results are in substantial agreement with findings from 
regressions of the dependent variables upon the mean values of income 
and education, and their squares. The statistical devices appear to  be 
useful in  exploratory empirical research. 

EXPLORATORY empirical work poses significant problems for the statistician. 
When well-defined models or reasonably clear hypotheses dealing with the 

interrelations between variables are lacking, it  is often necessary to use a pre- 
liminary sample of data to suggest interpretations that may be put to the test 
in later studies. This is the problem of exploratory, as opposed to descriptive 
or cause-effect, research [3, pp. 21-55]; i t  is particularly pertinent to areas of 
economics, marketing, and business research a t  the present time. 

This paper explores some of Kendall's [7] ideas for analyzing the relation 
between a dependent variable and a set of independent variables when the 
latter are not necessarily amenable to standard statistical treatment. He tenta- 
tively expanded on some of Stone's [9] results by obtaining the principal 
components of a set of standardized explanatory variables, calculating their 
regression upon a dependent variable, add the resulting parameters 
back into the terms of the original variates. In discussing this approach, he 
states: 

'It is possible t o  'orthogonalize' a regression situation for any arbitrary set of variates 
X. This possibility does not seem to have been much discussed in the literature; but  
i t  throws some new light on certain old but  unsolved problems; particularly (a) how 
many do we take?, (b) how do we discard the unimportant ones?, and (c) how do we 
get rid of multicollinearities in them?" [7,p. 701. 

The aim of this paper is to examine his suggestion by pulling together the 
major algebraic results needed for combining regression and principal com- 
ponents analysis, attempting to make some additional contributions to the 
statistical machinery, and trying out the resulting techniques upon a set of 

* The calculations for thia atudv were conducted on the IBM 7090 computer installed st the Stanford Univer- 
sity Computation Center; maahine-time waa in part financed by the oenter under National Science Foundation 
Grant No. NSF-GP948. 
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235 EXPLORATORY STATISTICAL RESEARCH 

real data. Empirical analysis is needed to begin to deal with the rather compli- 
cated interpretation problems arising when the methods are applied. 

The study examines the relations of the incidence of television and refrigera- 
tor ownership, of central heating usage, and of a condition of overcrowding in 
dwelling units with a set of twenty-three income and education variables. The 
data pertain to census tracts in the city of Chicago, as of 1950. Percentage 
points in the marginal distributions for income and education were used as 
independent variables; they mere reduced to principal components, the com- 
ponents related to each of the dependent variables given above, and the results 
projected back into terms of the original income and education variates 
through methods to be discussed in the paper. Classical least-squares regressions 
of the dependent variables upon the means of income and education and their 
squares were calculated to provide comparisons for the results obtained from 
the principal components-regression analysis. The agreement was good in al- 
most all cases, and it  was concluded that the principal components regression 
method is a useful approach in exploratory studies of complex relations between 
variables. 

1. DEVELOPMENT O F  STATISTICAL METHODS 

Review of Principal Components Analysis. The method of principal compo- 
nents has been known for many years and has been discussed in different ways 
by a variety of authors, so the present review need not be extensive. The reader 
may consult Anderson [I, Ch. 111 or Kendall [7, Ch. 11, and the references 
cited therein, for a more comprehensive discussion of the subject. The material 
to be presented in this section is limited to the mathematical development that 
is needed for understanding the sequel. 

The objective of principal components analysis is to find a linear transforma- 
tion of a set of n variates of X into a new set denoted by P, where the new 
set has certain desirable properties. These properties, which provide the ra- 
tionale for using the p's rather than the original x's, are: (i) the elements of p 
are uncorrelated with each other in the sample (orthogonality); and (ii) each 
element of P, progressing from pl to pz, etc., accounts for as much of the COD-

bined variance of the x's as possible, consistent with being orthogonal to the 
preceding p's. The new variables correspond to the principal axes of the ellipsoid 
formed by the scatter of sample points in the n dimensional space having the 
elements of X as a basis. The principal components transformation is thus a 
rotation from the original x coordinate system to the system defined by the 
principal axes of this ellipsoid. 

As is well-known, the principal axes of the space spanned by the elements of 
Xare not invariant to changes in the scales in which the variables are measured. 
In practice, this means that a change in the unit of measurement for even one 
variable (e.g., a change from inches to feet) can change the pattern of principal 
components. A discussion of the relation between units of measurement and 
principal components analysis is beyond the scope of this paper, but the prob- 
lem can be side-stepped if the analyses are confined to the principal axes of the 
x elements, as standardized through division by the square roots of their re- 
spective sums of squares. 
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Defining Z as the matrix of standardized x variates, the transformation to 
principal components is given by 

P = M'Z. (1) 

Providing that the rank of Z is equal to n (note that R(Z) =R(X)), both P 
and Z contain n rows and T columns, where T is the number of observations in 
the sample. The objective of the principal components procedure is to find M', 
the n X n  coefficient matrix for the transformation, working only from a 
knowledge of Z. 

To see how M is determined, postmultiply equation (1) by P' and substitute 
the transpose of its right-hand side: 

PP' = M'ZZ'M. (2) 

Note that ZZ' =R is the matrix of simple correlations among the x's and that 
PP1=D, which is the variance-covariance matrix for the principal components. 
Substituting these results into (2) yields: 

M'RM = D. (3) 

D should be diagonal by virtue of requirement (i) above. Therefore, equation 
(3) is an orthogonal similarity transformation diagonalizing the symmetric 
matrix R. A well-known theorem of matrix algebra states that the transforma- 
tion matrix M has an orthonormal set of Eigenvectors of R as its columns, and 
that PP' has the eigenvalues of R as its diagonal elements [4, p. 2481. Since 
the columns of M are orthonormal, moreover, it  is known that M'= M-'; 
therefore, the equation for the x's in terms of the p's can be written simply as 
Z =  MP. If the columns of M are ordered so that the first diagonal element of 
PP' contains the largest eigenvalue of R,  the second the next largest, etc., the 
principal components will be ordered as specified in requirement (ii) above. 
Furthermore, it  can be shown that the first component accounts for a maximum 
amount of the combined variance of the x's, the second for the maximum 
amount consistent with being uncorrelated with the first, etc. [7, pp. 15-61. 

As normally calculated and utilized, principal components are left in the 
form given in equation (1) above, in which case their variances are equal to 
their respective eigenvalues. However, experience with the related technique 
of factor analysis has demonstrated that it  is useful to scale the components 
so that all of them have equal variance. This is accomplished by premultiplying 
both sides of equation (1) by the inverse of the diagonal matrix of standard 
deviations for the p's, namely D-$.These scaled principal components will be 
denoted by F rather than P;  they are defined by 

F = (D-4M')Z. (4) 

The coefficient matrix (D-$M') is the inverse of the one ordinarily obtained in 
the factor analysis equation Z=AF. A is called the ('principal components 
loading matrix." It is computed by multiplying each orthonormal eigenvector 
of R by the square root of its Eigenvalue; thus, 

A = (D-iMt)-1 = MD+b. (5) 
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One advantage of scaling the principal components to unit variance is that the 
elements of A have a natural and useful interpretation; each a;j is the simple 
correlation of the ith variate with the jth component. Empirical work with 
principal components analysis begins with the calculation and examination 
of A. 

Regression on Principal Components. One reason for transforming a set of 
variates into principal components is so that their relations with yet another 
variable may be explored more easily. If the original independent variables 
(the x's) are highly collinear with one another, or if there are a great number 
of potential explanatory variables, it  may be appropriate to simplify their 
sample space by a transformation to principal components. The dependent 
variable can then be regressed upon the resulting principal components rather 
than upon the original variates. 

The principal components transformation can be regarded in the same man- 
ner as any other transformation that is used to prepare variates for regression. 
One needs to know the properties of the transformation and its inverse, and 
the conditions in which their use is appropriate. The major contention of this 
paper is that the principal components transformation can be very useful in 
exploratory statistical research; the paper concentrates upon a partly mathe- 
matical and partly empirical examination of the properties of principal com- 
ponents transformation. 

Consider a 1X T vector of observed values for a single variate, which is to be 
predicted and hopefully explained by the set of n independent variables con- 
sidered above. Writing this vector as y', with each element standardized 
through division by the dependent variables' standard deviation, the regression 
of y on the scaled principal components of x is denoted by 

y' = y'F + e', (6) 

where y' is a vector of regression coefficients, and the elements of e' are the 
error terms in the regression. Working from the principal components loadings 
matrix, it  would be possible to calculate the n X  T matrix F i n  order to provide 
the input information for (6) : 

Once the values of F are known for every observation in the sample, the 
parameters of (6) can be estimated by ordinary methods. 

The work required to calculate F can be eliminated by substituting (7) into 
(6) directly, as shown in (8) and (9). Despite the simplicity of this short-cut 
procedure, it does not seem to be currently in use: the standard library com- 
puter programs for principal components-regression analysis with which the 
author is familiar use the long method discussed in the last paragraph. The 
effort saved by using the short cut becomes significant when the sample size 
(T) is large. This is true even when a computer is being used for the calcula- 
tions, since for samples that are too large to be held in core memory, the long 
method requires four reading and writing operations for each of the n variates 
or components over all T of the observations, as opposed to just one such 
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operation for the short meth0.d. These input-output operations involve the 
expenditure of relatively large amounts of time on most machines. 

The short method can be presented in terms of the least-squares solution 
for (6), as given by equation (8). Substitution of (7) into (8) and use of the 
relation FF1=I yields the final result, equation (9).l 

The last term is the vector of simple correlations between y and the x's. I n  
scalar terms the regression coefficient of y on the kth principal component is 
given by 

Since the f's have been standardized, the ye are the "beta" or standardized 
coefficients of regression of y on the principal components. Moreover, the 
orthogonality of the f's implies that  the y's can be interpreted as correlation 
coefficients between y and the components. In  fact, the yJs could be regarded 
as an extra row added to the loadings matrix A, corresponding to the dependent 
variable y and relating i t  to  the .principal components in exactly the same way 
as the aij relate the x's to the components. (Note, however, that the orthogonal- 
ity of A would be destroyed by the addition of this row.) 

The coefficient of determination and error variance for the regression are 
easily calculated from the y's: 

Again, following well-known regression theory, the covariance matrix for the 
y's is: 

xY= (FFI)-~~:= U,I. 
2 

Subject to all of the usual restrictions on the regression error terms, the y's are 
independently distributed normal variates with identical variances u:. 

The inverse of the principal components transformation is also easily ob- 
tained. Given estimates of the yJs, i t  is possible to obtain values for the regres- 
sion coefficients of the original variables by applying the same transformation 
that takes F back to 2: 

y = y f ~  = 0'2.= ( y ~ - l ~ f ) ~  (11) 

Since the least-squares solutions for the last two equalities and y must be 
unique, the vector of beta coefficients for the regression of y on the x's is equal 
to the following: 

1 Equation (9) and the sequel are not valid in factor analysis, where "cornrnunalitiesn are used instead of ones 
on the principal diagonals of the correlation matrix from whioh roots are extracted. This occurs because the use 
of oommunalities destroys the equality between Zy'  and rzy. 
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I t  may be noted in passing that the transformation from variables to principal 
components, the regression of y on the principal components, and the inverse 
transformation of the regression coefficients back into the z domain yields the 
usual least-squares solution for the beta coefficients of regression: 

y = A-lrZy, 

by (9) and (5); and 

Q = A-lf y = (A-lfA-')ray = (AAf)-lr,, = R-lr,,. 

The last quantity is the classical least-squares equation for beta. 
The variance-covariance matrix for the 6's can be calculated, provided that 

the sample principal components are viewed as predetermined summary vari- 
ates, rather than as estimates of "true" components in the underlying popula- 
tion. Then the elements of AD-l are known coefficients in the linear relation 
linking the betas to the gammas, which in turn are independently distributed 
random variables with zero mean. Thus, 

The covariance for the ith and j th beta coefficients is therefore given by 

All of these quantities are easily calculated on a computer once the loadings 
matrix and correlation coefficients among the dependent and independent 
variables are known. 

Properties of the Principal Components-Regression Parameters. Use of the 
procedures discussed above would hardly be necessary when the beta vector 
could be estimated directly by classical methods. At least two situations 
arise, however, in which ordinary multivariate regression is not appropriate: 
(i) when the independent variables are collinear with one another, making in- 
version of the correlation matrix impossible and the elements of beta indetermi- 
nate; and (ii) when, because of high (but not complete) collinearity or for some 
other reason, it is desirable to collapse the independent variable space by de- 
leting one or more principal components from the regression relationship. The 
two cases will be considered separately below. 

(i) Collinear independent variables. Heretofore, it  has been assumed that 
the rank of Z is equal to n, the number of independent variables. Consider now 
the case when the rows of Z are subject to one or more linear restrictions reduc- 
ing its rank to m<n.  The classical regression solution is indeterminate under 
these conditions, but by using principal components regression technique, it  is 
possible to estimate the parameters of regression upon the projections of the 
original variables into the m-flat of the space Enspanned by the rows of 2." 

Given the rank of Z, m is the maximum number of nonzero eigenvalues that 
can be extracted from the correlation matrix. Thus, A contains n rows but 

2 This situation may alao be handled by solving the classical regression problem with parameters subject to  
m Xm linear constraints, as discussed in Johnston I61 
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only m columns. While A-' is not defined for A not square, it  is possible to 
prove that D-'A' is the left inverse of A, where D is now of order mXm. (See 
Perlis [8, pp. 58-91 for a discussion of left and right inverses.) This means 
that D-lA'A= I,; the result is seen intuitively because, for the x's collinear, 
the principal components transformation amounts to a rotation of axes in the 
subspace of En that is spanned by the columns of 2,and such a rotation is 
freely reversible. Thus, the logic given by equations (1)-(5) holds unaltered 
for Z collinear. 

The definition of linear dependence and rank provides that, for Z of rank 
less than n, there must be a matrix a containing n-m non-null rows of order n 
such that a Z =  0. Premultiplying the equation defining the eigenvectors of the 
correlation matrix R M =  MD (or equivalently (22')M =  MD) by 1and apply- 
ing equation (5) yields the relations: 

and 

(0) = LAD,. 

Since all the row elements in a given column of A are multiplied by the same 
diagonal element of Dt, it is apparent that the rows of A, taken by themselves, 
are linearly dependent. Furthermore, the coefficients defining the dependence 
are the same as those defining it for the rows of Z. Carrying through this same 
procedure, equation (12) is premultiplied by a to obtain: 

Thus, the n betas estimated by the principal components-regression procedure 
lie in the same subspace of Enas did the original z's. Exactly the same results 
hold for the betas' variance-covariance matrix, which is obtained according to 
equation (13). 

The preceding paragraphs dealt with the reduction of the number of com- 
ponents used in a principal components regression analysis for cases where 
extreme multicollinearity has reduced the rank of the data matrix from n to 
m. This amounts to a process of: (a) transforming the sample variates to 
principal components; and then, (b) dropping the n-m components that fail 
to account for any of the variance of the original variates. (The components 
that are dropped have zero eigenvectors.) This simplification of the sample 
space of the x's is required for the subsequent regression. 

(ii) Deletion of Components. The possibility of simplifying the x-sample 
space through deletion of components exists even when the rank of the data 
matrix is equal to n, since one or more nonzero principal components may be 
dropped from the regression. It is desirable to examine the effects of dropping 
components upon the results given earlier in this paper, recognizing that unlike 
the previous case, the sacrifice of nonzero components represents a reduction 
in the amount of information that is provided as input to the subsequent re- 
gression. 

The first question that must be considered is, "What components should be 
deleted in order to simplify the statistical analysis without destroying whatever 
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basis may exist in the explanatory data for predicting the dependent variable?" 
There are a t  least two alternative criteria for deleting components: 

a. 	Delete the components that are relatively unimportant as predictors of 
the original independent variables ( X )in the problem; i.e., the components 
having the smallest eigenvectors should be dropped. 

b. 	Delete the components that are relatively unimportant as predictors of 
the dependent variable (y)in the problem. In  this case the components 
having the smallest values of gamma (the correlation between the com- 
ponents and y) should be dropped. 

Hotelling [5]has pointed out that in general there is no reason why components 
that are important as far as the independent variables of a problem are con- 
cerned will be highly correlated with the dependent variable in a regression, 
so criteria a and b above are likely to lead to different results. Furthermore, it  
is easily shown that y need not be highly correlated with components having 
large eigenvalues in order for the explanatory power of the complete principal 
components regression to be high. 

The choice of criteria must rest with the purpose of the analysis, as well as 
the degree to which the principal components results can be interpreted in 
terms of the structure of the process underlying the data for the independent 
variables. If the first few principal components can be related to something 
"real," as is hopefully the case in factor analysis, for example, then it may make 
sense to retain them as explanatory variables in a principal components-regres- 
sion analysis, regardless of their correlation with the dependent variable. (In 
the author's experience, components with large eigenvalues are the ones most 
likely to yield natural interpretations.) Conversely, if the emphasis is on finding 
the correlates of y rather than testing its relation to any particular structural 
concepts, it  would seem to make more sense to adopt criterion b and retain 
those components with the highest values of gamma. This is often the case in 
purely exploratory studies. The latter approach has been adopted in the 
empirical work to be reported later, but the results given in the following 
paragraphs hold, regardless of the criterion used for deleting components. 

Removal of components causes the loadings matrix to become non-square, 
and reduces the order of many of the other matrices discussed above. It has 
been seen, however, that equations (1)-(5) hold, whether A is square or not. 
It can be shown that they hold, regardless of which components are retained, 
or of the order in which the columns of A are arranged. The fact that other 
non-null components exist has no bearing upon the mathematics given in (1)-
(5) and hence cannot affect any of the later results. 

Deletion of one or more nonzero principal components amounts to partition- 
ing the set of independent variables into two groups of n variates each, assum- 
ing Z is of rank n. (If a selection criterion based on the gammas is used, one of 
the two groups can be regarded as related to the dependent variable and the 
other as relatively unrelated.) This might be expressed as follows: 
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The eff'ects of the n singly primed variables (2') are included in the regression, 
while those of the doubly primed set are thrown into the error term. Estimates 
of the beta coefficients for the are obtained by working through equation 
(12), using only those components f; that have been included in the regression. 
The values of the zl can be estimated by the equation Z(')=A(')F(') ,if desired. 
The proportion of the variance of each of the original variables xi that is ac-
counted for by zl is given by the sum of squares of the elements adjof A('),taken 
over j. (This sum is called a communality in factor analysis.) 

Thus, the regression of a dependent variable upon a reduced set of principal 
components amounts to partitioning the n-space spanned by the original inde- 
pendent variables into two orthogonal subspaces. If the gamma criterion is 
used, one space of dimension m (the number of retained components) is defined 
by principal axes that lie comparatively close to the dependent variable vector 
in the full sample space ET.The artificial z' variables defined in the preceding 
paragraph represent the projections of the original variables into the Em sub-
space, and the z" are projections into its compliment. 

Only m of the zf and n -m of the z" can be linearly independent; this follows 
as a direct consequence of the dimensions of the subspaces in which they are 
defined. Therefore, the estimated values of the pis will be subject to n -m linear 
restrictions, or more, if the original variables are not independent. No prior in- 
formation about the nature of these two subspaces is needed before conducting 
the analysis; not even their respective dimensions need be known. On the other 
hand, it  may be difficult t<interpret the x' and z" in terms of the substance of 
the empirical p r ~ b l e m . ~  

2. EMPRICAL RESULTS 

The statistical procedures developed in the previous section were applied to 
a set of real data in order to gain some insight into the practical problems to be 
expected in their application. The data were selected so as to compare the 
results from using the new technique against those from classical multiple re- 
gression in a situation where the use of the two approaches seemed to be 
reasonably compatible. In  addition, it  was hoped that the empirical findings 
would prove to be interesting in their own right. 

Description of Data. Data on the distributions of income for families and 
unrelated individuals (in 1949) and educational achievement for male family 
heads were obtained from the census tract statistics of the city of Chicago 
for 1950.4 These data make up the set of independent variables in the study. 
They consist of the proportions of a tract's population that fell into each of 

8 While not related to the empirical analysis reported in this paper, principal components regression may prove 
useful for exploring oertain "errors in variables" regression problems were: (if the errors in the independent vari- 
ables are almost uncorrelated with the dependent variable and its errors; and (ii) the errors in the independent 
variables are either much more or much less correlated with one another than are the independent variables them- 
selves. Condition (ii) is neoessary to insure that the errors will be separated from the true variables by the principal 
axis method, while (i) implies that the appropriate components will be selected for inclusion in the regression upon 
y. Conditions other than (ii) may yield a aeparation of the variables' and errors, subspaces via principal compcr 
nents, but their nature ie not well understood a t  the present time. The approach is related to Ragnar Fritsch'e 
ooduence analysie, whioh is well-explained in the paper by Sonte 191. 

4U. S. Bureau of the Census, 17th Census of the United States; 1960 Popdalion, Volume 3, Census Tract 
Statistics. Cross classifioations of the dependent variables by income and education claases are not available from 
published census material. 
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the fourteen income classes (ranging from (($0-500" to ('over $10,000") and 
nine education classes (ranging from "no formal education" to "college gradu- 
ate or better") reported in the census. Only the marginal distributions for in- 
come and education were available; thus the number of independent variables 
was 23. The total number of census tracts included in the sample was 1090. 
The independent variables were subject to two linear restrictions, since the 
fourteen income and nine education variables had to sum to one, separately, 
for each tract. 

Four dependent variables were chosen from the same source. Their names, 
definitions, and mean saturation5 levels for the sample are as follows. 

Television Ownership. The proportion of the households in  the tract that  owned one 
or more television sets, whether or not the set was in working order a t  the time of the 
enumeration. Mean saturation =.31. 

Refrigerator Ownership. The proportion of households in the tract tha t  had the use 
of a mechanical refrigerator for the refrigeration of food in the home. (Home ice 
chests, etc., were excluded.) Mean saturation =.90. 

Central Heating. The proportion of households in the tract tha t  were domiciled in a 
dwelling unit tha t  was heated by piped steam, hot water, or a central warm air fur- 
nace. Mean saturation =.72. 

Overcrowding. The proportion of households in the tract domiciled in a dwelling unit 
having an average occupancy rate of more than 1.01 persons per room. (Excluded in 
the definition of a room were bathrooms, halls, closets, porches, and other rooms 
"not suitable for living accommodations.") Mean saturation =.15. 

In  addition to the variables utilized in the principal components-regression 
analysis, the means of the income and education distributions were calculated 
for use as exogenous variables in some classical regression runs. They were com- 
puted using the midpoints of the class intervals as multipliers for the propor- 
tions; the two upper classes were open-ended, so the values $12,500 and 16 
grades were chosen more or less arbitrarily for them. 

The Demand Models. The purpose of the investigation reported here is to 
compare the results obtained from principal components-regression analyses 
utilizing the data described above with those from classical least-squares analy- 
sis based on the usual type of summary statistics that may be derived from 
the data. The following expressions for the demand for stocks of the four 
products being studied were used in the two analyses. 

(i) Principal components-regression analysis. The flexibility of the principal 
components-regression approach permits utilization of the census information 
on the distribution of income and education within each tract in its most dis- 
aggregative form, regardless of the problem of collinearity. These distributions 
may be related to the tract's saturation (for each of the dependent variables) 
in the following manner: 

6 "Saturation" refers to  the proportion of families in a given tract who own or exhibit the indicated attribute. 
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and 

In  the equations, P E ~ ~and Prij refer to the percentage of households in the j th  
education and income class, respectively, in the i th tract. The ed and uiare the 
random error terms in the equations. The definitions of all the other variables 
and parameters should be obvious from the context. The sum of the above 
equations is also an equation. It has the desirable property of combining the 
income and education information into a single expression that is amenable 
to analysis by the principal components-regression technique. This gives the 
following demand function: 

where the error vi is equal to one-half the sum of ej and ui.The regression co- 
efficients represent the effect of deviations in the income and education dis- 
tributions of a given tract, from those for the sample as a whole, upon the 
saturation level for the tract. The empirical results reported are all based on 
beta coefficients of regression, which are related to the parameters of (16) by 
the expression Pi= ($bi) (a,,/a,), where xi is any member of the independent 
variables' vector. 

The manner of reporting the beta coefficients in this study is noteworthy. 
The ('beta profiles" presented in Figure 1 show these results in the form of a 
connected graph, which implies some continuity of effects between adjacent 
income and education classes. The procedure is valid because adjacent classes 
represent simple cuts along the same income or education distribution; thus 
the observed values of beta for two or more adjacent classes might be expected 
to be more nearly the same than would be the case for widely separated classes. 
It must be emphasized that this continuity of the several income and education 
dimensions is not a necessary condition for the use of principal components- 
regression analysis. The methods discussed in this paper will also work on sets 
of variables that do not share a logical commonality, although they may still 
be highly correlated among themselves. Pairs of variables like ((average income" 
and "percentage of working wives" would also be acceptable, for instance. 

The particular demand model and its associated data base used in this study 
were chosen because: (i) some information about the nature of the saturation- 
income and saturation-education effects-that is, the shapes of the beta pro- 
files-was available on a priori grounds; (ii) the principal components-regres- 
sion results could be compared with those of ordinary regression using summary 
information from the same data base in a fairly direct fashion; and (iii) there 
was an opportunity to investigate the stability of the principal components- 
regression procedure in terms of departures from the expected smooth shapes 
of the beta profiles. The properties of the estimation method depend only on 
the correlation properties of the data and not on the special nature of the model 
chosen for analysis, so the findings should also be valid for less well-defined 
sets of data. 
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(ii) Classical Regression. Some ordinary regression runs were made to pro- 
vide a check against the results obtained by using the principal components- 
regression technique. It is clear that  equation (16) is not appropriate for use in 
ordinary regression, since both the income and education variable sets are 
collinear. (The variables in each of them must sum to one.) The regression 
plane would be highly unstable even if one of the variables from each set were 
deleted to destroy the singularity of the system. Therefore, it is necessary to 
derive some summary variables from the data in order to perform the classical 
regression. It may be noted in passing that in the present case the principal 
components-regression method "works" precisely because it, too, calculates 
summary measures from the original data set prior to regression. I n  the classical 
case used here, summary measures are defined on a priori grounds rather than 
as summary principal components. 

Many different sets of summary statistics could be calculated from the in- 
come and education distribution data. The simplest possible set was chosen; 
namely, the means of the distributions and their squares, as calculated for each 
tract in the sample.6 The use of means has obvious intuitive appeal. In  addition, 
they are highly correlated with the medians of the distributions, which have 
been used successfully in linear and quadratic regressions on durables goods 
ownership (cf. Dernberg [2]). The squared terms were required to provide 
degrees of freedom adequate to allow a reasonable comparison with the beta 
profiles obtained from the principal component-regression analyses. Thus, the 
classical regression used is : 

Once the parameters of (17) were estimated, the predicted value of y was calcu- 
lated for each of a range of values of f and E. These predictions were compared 
with the profile of the beta coefficients obtained from the principal components- 
regression analysis. 

A preliminary word about the comparison of the two statistical procedures 
is in order a t  this point. The complete principal components-regression analysis 
contains a total of 21 free parameters which are to be estimated from the data 
(i.e., the total number of income and education classes minus the two linear 
restrictions mentioned earlier). The classical regression based on summary 
statistics of the detailed class information contains only four parameters. It 
has already been noted that the method of summarization is predetermined in 
the classical regression and is left to be determined from the data in the princi- 
pal components-regression procedure. If the coefficient of determination (R2) 
were adopted as the criterion for the relative success of the two approaches, the 
result would seem to be biased in favor of the principal components analysis, 
since i t  appears to have the larger number of degrees of freedom. But this way 
of thinking about the problem is not appropriate because: 

a. components will be deleted so that some of the regressions in this category 

a In retrospect, i t  would seem to have been more appropriate to calculate the means and the standard devia- 
tions of income and education from the class data, and use the latter in the regressions in places of the squares of 
the means. For most tracts, however, the two statistics are highly correlated with one another, so the difference 
is probably not important. 
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will contain four or even fewer parameters, and 
b. 	 the theoretical advantage of the principal components-regression tech- 

nique over classical methods lies in its greater facility for handling large 
and highly interrelated sets of data directly-without the need for speci- 
fying summarization methods on a priori grounds. 

The comparison is therefore based on the use of both techniques in a relatively 
"natural" manner: variations in the number of free parameters are merely an 
embodiment of the difference between the fields of applicability of the two 
approaches. In  fact, the comparisons are biased in favor of the classical tech- 
nique, since in the present instance the nature of the data, as well as a body of 
economic theory and previous empirical work, strongly indicated what sum- 
mary measures should be chosen. This is an advantage that is not always pres- 
ent in exploratory statistical research. 

The Principal Components and Their Correlations with the y's. Table 1gives 
the sample means, standard deviations, and the loadings matrix for 20 principal 
components obtained from the set of 23 independent variables. The rank of Z 
was 21, but owing to its extremely small eigenvalue, the last component could 
not be evaluated because of rounding errors accumulated in the computer pro- 
gram. In  addition to the loadings, the last row of the table gives the eigenvalue 
( d k k )  associated with each component. The gammas, or correlations between 
the principal components and dependent variables, are presented in Table 2, 
along with the standard errors of the gammas and the coefficient of determina- 
tion for each regression. 

The first two components account for most of the relationship between the 
y's and x's in all four cases. They also explain some 56 per cent of the variation 
of the x's themselves. As can be seen from Table 1,the first component is nega- 
tively loaded on the middle income and high education variables, and positively 
correlated with the low and high income and low education variables. Com- 
ponent number two is positively loaded on the middle education and low to 
middle income classes and negatively loaded on the high and low education and 
high income variables. Television ownership is negatively related to the first 
component and positively related to the second, and thus would seem to in- 
crease with the proportion in the high education classes. For the other classes, 
the effects of the two components run in opposite directions, making only the 
most tortuous interpretations possible. Similar conditions hold for the other 
dependent variables. It is therefore desirable to transform the results back 
into terms of the x's to make more definitive conclusions possible. 

Beta Estimates for the Original Variates. The beta coefficients and their 
variance-covariance matrices were calculated for each of the dependent varia- 
bles according to equations (12) and (13). Four sets of betas were obtained for 
each study in order to assess the effect of deleting different collections of princi- 
pal components. Selection of the components to be included in each set was 
accomplished by examination of the ratio y/a,, which is an expression for the 
significance of the correlation between each principal component and the re- 
spective dependent variable. The four sets are based upon components with 
ratios of a t  least 2, 1,Q, and 0 (the latter condition admits all the components 
regardless of their correlation with the dependent variable). The resulting 



TABLE 1. LOADINGS MATRIX FOR STANDARDIZED PRINCIPAL COMPONENTS 

(23 Income and Education Distribution Variables) 

Sample* Principal Components* 
Income (WOO) I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

rz 


Education (grades) 

0 136 094 

1 4  169 071 

5-6 127 044 

7 113 039 

8 080 033 

9-11 138 051 


12 081 038 

13-15 098 052 

16-up 059 089 


Eigenvalues 

* Decimal points are to the left of the lead digit. Loadings can be interpreted as correlations between variables and principal components. 
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TABLE 3. PRINCIPAL COMPONENTS-REGRESSION SUMMARIES 

Components P.C.-Regres- R' for Classical 

Dependent 
Used in the Regressions sion Results Regressions 

Variable 
Criterion Number %

Variance R' Means and Means 
Means Squared Only 

Television 2u# 3 62.0 .56 .014 
l o  9 75.0 .63 .050 .53 .51 
1/2u 14 86.5 .64 .069 
all 20 99.5 .64 .088 

Refriger- 2 ~ #  2 56.1 .67 .009 
ators 1 s  5 68.0 .70 .029 .56 .46 

1/20 8 72.9 .71 .051 
all 20 99.5 .71 .098 

Central 20 1 35.1 .30 .016 
heating lo#  3 62.0 .49 .040 .49 .43 

1/26 5 65.6 .53 .099 
all 20 99.5 .55 .251 

Over- 20 4 fM.2 .70 .019 
crowding Is#  7 73.7 .75 .027 .66 .61 

1 /2u 13 85.8 .76 .049 
all 20 99.5 .76 .069 

group of 16sets of 23 coefficients each was too large for presentation, but some 
of the results are given in Table 3 and Figure 1. 

Summary statistics are presented in Table 3. The left-hand portion of the 
table shows the number of components whose correlations with y met the 
gamma criterion, the proportion of the variances of the 2's that  is accounted 
for by these components (per cent variance), the coefficient of determination 
for the regression (R*),and the average of the standard deviations of the beta 
coefficients resulting from the principal components-regression analysis ( Z b ) .  
The last quantity provides a simple summary of the precision of the beta 
estimates; i t  was calculated as the square root of the average of the diagonal 
elements of zip. Two results emerge from the left-hand portion of Table 3: 
(i) most of the explanatory power of the regressions is concentrated in a rela- 
tively small number of principal components; and (ii) the average standard 
errors of the beta coefficients go up sharply as the number of principal com- 
ponents in the regression is increased. The first point has already been noted 
in connection with Table 2. The second will be considered further below. 

The solid lines in Figure 1 are profiles of the beta coefficients calculated for 
the regressions denoted by (#) in Table 3. According to the television profile, 
tracts with a relatively high incidence of families with incomes above $4000 per 
year tended to have lower television saturations than those with a larger pro- 
portion of low income families. Since these are essentially regression results, 
the income coefficients must be interpreted as if the education variables were 
held constant a t  their mean values. For income constant, i t  appears that in- 
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creases in educational attainment are associated with increased television 
saturation up until the highest education class is reached, when the relationship 
is reversed. It must be recalled that, according to the arguments given in the 
first part of this paper, the television profiles presented in Part A of Figure 1 
are based on only three degrees of freedom, since only three principal com- 
ponents were utilized in the underlying regression. But i t  will be seen that these 
conclusions are compatible with those obtained from the classical regression 
and, moreover, that they are not greatly affected when the number of degrees 
of freedom is increased by the addition of more principal components. 

From the beta profile for refrigerators i t  appears that for education held 
constant, increments in mid-range of the income distribution produce dispro- 
portionate increases in percentage saturation. (Once again, this finding is not 
substantially altered by the addition of more principal components.) The find- 
ings for education are more nearly in line with expectations: ownership of 
refrigerators increases rapidly a t  the lower end of the education distribution 
and then levels off a t  the higher levels where saturation is virtually 100 per 
cent. Roughly the same pattern is observed for the education variables in the 
central heat case: the beta profile first rises sharply and then levels off. The 
central heat-income relationship is more reasonable than its counterpart for 
refrigerators, since tracts with a high incidence of low income families exhibit 
very low saturations, but the tendency for the profile to reach a peak a t  the 
three to four thousand dollar class is still very noticeable. 

Education is the most important determinant of dwelling unit overcrowding. 
There also seems to be some tendency for overcrowding to increase along with 
the proportion of households in the higher income brackets, which is contrary 
to expectations. I t  will be seen, however, that the same result is obtained with 
the classical least-squares method, so the anomaly cannot be attributed to the 
use of principal components. The sharp oscillation of the profile in the two to 
three thousand dollar income range is due to the relatively large number of 
components used in this regression, as will be discussed below. Further discus- 
sion of the principal components-regression results will be postponed until after 
the classical results are considered. 

Comparison with the Classical Regression Results. Coefficients of regression 
for each of the dependent variables upon tracts' mean income and education 
and their squares were estimated by classical least squares. The results are 
presented in Table 4 and summarized in the right-hand portion of Table 3. 
The squared terms are highly significant in all cases, as can be seen from the F 
tests for the addition of these two terms to the regression. Since they were 
highly correlated with mean income and education, i t  is not surprising that the 
coefficients for the latter were changed markedly and reduced in significance 
by the addition of the squared terms to the regression. The first set of results is 
generally consistent with that  reported by Dernberg [2] in his study of tele- 
vision ownership. 

While the coefficients of determination are fairly large, they are smaller than 
the ones obtained by using the principal components-regression technique. 
This is true even where the number of components is reduced to two or three. 
Hence it may be concluded that the first few principal components contain 
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while holding education constant a t  its over-all mean value, and similarly for 
the education curves. The comparison with the beta profiles that are also pre- 
sented in these charts is rough, since the two curves mean somewhat different 
things, the number of degrees of freedom differs, and the ordinates refer to 
average income in one case and to particular income class limits in the other. 
Nevertheless, the two sets of estimates should exhibit roughly the same shape, 
and indeed they do so for most of the cases. There is good agreement between 
the television-education, refrigerators-education, and overcrowding-education 
curves. Allowing for the differences reflected in the ordinates of the curves, 
there is good agreement between them for central heat and income. Those for 
television-income and central heat-education are reasonably consistent, while 
the divergence between the beta profile for overcrowding and income and the 
classical regression curve is not especially significant, for reasons to be dis- 
cussed below. Only the refrigerator-income curves do not fit together; even 
though the classical regression parabola would slope downward to match the 
beta profile a t  the upper income levels, this extension is not valid because it 
would run well beyond the range of the observed means for the tract. 

It was thought that the divergence of the refrigerator-income curves might 
be due to the education effect swamping that  of income in the principal com- 
ponents-regression analysis. Alternatively, it was possible that with only two 
components in the regression, the two degrees of freedom available for esti- 
mating the betas were insufficient to allow an adequate fit to the data. Both 
hypotheses were explored and both were found to be false. The regressions 
incorporating 5, 8, and 20 components showed roughly the same shape as did 
the one for 2 components (except for decreased stability of the type to be dis- 
cussed below). A principal components-regression run for refrigerators on 12 
principal components of the income variables by themselves produced betas 
that were nearly the same as those for the 8-component income-education case. 
The refrigerator-income beta profile thus remains a puzzle, especially since the 
classical regression results appear to be reasonable. 

Efect of Adding Components to the Regression. The principal component- 
regression results reported so far are all based upon a relatively small number 
of components. The curves become much less stable as more components are 
added, and there seems to be a tendency for the betas to fluctuate about a 
fairly smooth trend as the number increases. The profiles given in Figure 1are 
reasonably good representations of this trend in all of the cases, which is one 
reason why they were presented in preference to the other alternatives. 

A comparison of two beta profiles for television, based on 3 and 14 principal 
components, respectively, is presented in Figure 2. Two standard deviation 
confidence limits have been added to the estimated profiles. The 3-principal 
components curve falls within the confidence limits for the 14-component one 
for all but 2 of the 23 variables (Figure 2, Part B). Discounting the irregular 
fluctuations in the 14 component curve, their shapes are fairly equivalent, 
except for the highest income and education levels. 

A noteworthy facet of the two charts is that the confidence limits on all the 
beta coefficients increase rapidly as components are added to the regression, a 
fact already implied by the average standard deviations given in Table 3. 
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FIG.1. Beta Coefficient Profiles and Classical Regression Saturation Estimates* 

Values of Beta and Estimates of Saturation 


-20 -16 -12 -8 	-4 0 +4 $8 +12 t16 $20 -16 -12 -8 -4 0 t4 +8 t12 +16 t18 

BETA (10-2) 

Fra. 2. Two Sigma Confidence Limits on Beta Profiles-Television; A. 3 Principal Com- 
ponents, B. 14 Principal Components. 

The X scale is not relevant for comparing the two types of regression methoda. (All four scales are the ssme.) 
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There is a good reason for this result: as components are added to the regres- 
sion, linear restrictions on the betas are removed without a commensurate 
decrease in a:. Since as far as the principal components-regression technique is 
concerned these restrictions represent a priori information about the beta 
profiles, their uncompensated loss must result in a reduction of estimating 
efficiency. This shows that, other things being equal, it  is possible to get inore 
precise estimates of the betas in restricted subspaces, although they are also 
more highly correlated among themselves. (And any group of more than rn 
betas is perfectly collinear.) Of course the various beta profiles refer to projec- 
tions of the original variates into different subspaces, so that they are not 
entirely equivalent quantities. Nevertheless, the degree of identity between 
the projections is strong. 

3. CONCLUSIONS 

The empirical research reported in this paper was aimed a t  finding whether, 
from the same set of data, the principal components-regression analysis of 
complex data can yield results that are comparable with those from traditional 
regression analysis that uses well-accepted summary statistics. I n  addition, 
the effect of increasing the number of components used in the regressions to 
include some that are not strongly correlated with the dependent variable was 
examined empirically. The following general conclusions were obtained: 

a. 	The principal components-regression results are in substantial agreement 
with those obtained from regressions on the tracts' mean income and 
education levels and their squares in almost all of the cases studied, as 
judged by comparing the shapes of the beta profiles from the former with 
the partial regression slopes obtained from the latter. That is, most con- 
clusions about the effects of income and education upon the saturation 
levels of the four dependent variables would be about the same as those 
obtained by traditional means-although the degree of subjectivity re- 
quired is higher. 

b. 	 Coefficients of determination for the principal components-regression 
analyses are almost always higher than those for the regressions upon the 
tracts' means and their squares. While the differences are not large, the 
principal components-regression technique yielded the larger R 2  while 
employing fewer regressors than their classical counterparts in three out 
of the four cases. 

c. 	 Only those components that are strongly related to the dependent varia- 
bles can be included in the principal components-regression analysis if the 
beta profiles are to be used as the basis for conclusions about structure. 
The addition of components not so related caused the beta profile to be- 
come unstable and difficult to interpret, although the general shape of 
the profile is not substantially altered. The exact number of principal 
components to be included was found by trial and error. 

These results are important because they show that principal components- 
regression analysis can lead to reasonable results, even in situations where the 
input data are highly collinear. If theoretically appropriate summary variables 
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for the original data set had not been available, the results reported above 
might have been used to define such a set of statistics. The new variables would 
presumably be highly correlated with those original variates for which the beta 
profiles assumed extreme values, while being more directly interpretable in 
terms of the structure of the problem than are principal components. These 
variables, and hypotheses based on them, would in turn have formed the basis 
for subsequent statistical analysis. 

Regression upon principal components appears to be worthwhile during the 
exploratory phases of empirical research. The methods explored in this paper 
are useful because : (i) they permit rapid calculation of the correlations between 
the dependent variable and each of the components, and (ii) they refer the 
regression results back to the projections of the original independent variables 
into the space spanned by the components included in the given regression. 
Furthermore, the characteristics of the betas can be traced through different 
subspaces quickly and easily, without the need to recalculate any principal 
components. This flexibility is very important in exploratory research. 

While most methods for summarizing a group of variables in a space of 
smaller dimension involve a loss of information, this strategy is often desirable. 
Where the basic set of variables is unworkable in its original form-whether 
because the number of variables is too great for available analysis methods, be- 
cause of multicollinearity, or for any other reason-some kind of summarization 
is necessary, and the only question is how it should be accomplished. Summari- 
zation of the income and education distribution variables used in this study 
was accomplished by calculating the distribution means and their squares for 
each of the tracts; in this case, the information content of the original set was 
collapsed into a particular subspace of dimension four. But the basis for sum- 
marization is not always obvious a priori. Transformation to principal com- 
ponents boasts the two advantages discussed earlier in this paper: (i) the com- 
ponents are orthogonal, allowing easy exploration of alternative subspaces in 
relation to the dependent variable's vector in the sample space; and (ii) each 
coinponent contains a maxin~um amount of information, consistent with being 
uncorrelated with the previous ones. If the correlation with the dependent 
variable is used as the criterion for retaining components in the regression, the 
subspace into ~vhich the independent variables are to be projected is chosen in 
part on the basis of its proximity to the vector that is to be predicted or ex- 
plained. 

A major problem in ordinary principal components analysis is to give sub- 
stantive meaning to the components after they have been discovered. When 
combined with regression, it is necessary to identify the components in order 
to give meaning to the regression coefficients. I n  the present case this problem 
is partially overcome by referring the regression results back to the terms of 
the original set of independent variables, as projected into the summary sub- 
space. 

The methods explored in this paper are not intended to be substitutes for 
the established principals of statistical inference: hypothesis building and test- 
ing. The author bows in advance to all charges of espousing measurement with- 
out theory, but submits that this is necessary in the early states of empirical 
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research. Hypotheses may be developed after certain kinds of summary varia- 
bles have been suggested by looking a t  data and relating them to fragments of 
theory. These hypotheses should then be tested upon a fresh sample. While 
supplanted by more precise techniques a t  a later stage of research, the ability 
to rapidly and conveniently explore relationships between variables in a complex 
set of data can be of great importance. More theoretical and empirical work 
on methods for untangling complex relationships by means of flexible statistical 
procedures, including the ones discussed here, is urgently needed. 
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